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J .  P H Y S .  A ( P R O C .  P H Y S .  S O C . ) ,  1 9 6 8 ,  S E R .  2 ,  VOL.  1 .  P R I N T E D  I N  G R E A T  B R I T A I N  

Measurements of the factorization properties of higher-order 
optical correlation functions 

Abstract. We report the results of photon-counting experiments which demonstrate 
the factorization properties of the correlation functions, up  to sixth order, of coherent 
and incoherent optical fields. 

I n  his fundamental papers on the quantum theory of optical coherence Glauber 
(1963 a, b) constructed a sequence of correlation functions 

G'n'(rltl rntn, rn+ltn+l r2nt2n) 
for the electric-field vectors 8 ( r ,  t ) .  For a fully coherent field, such as might be obtained 
from an ideal laser, he showed that the higher-order correlation functions factorize as 
follows : 

n 2n  

Gn)(r, t ,  ... r2,t2J = n 8*(rttJ 11 8 ( r l t j )  ( l a )  
t = l  J = n - r l  

while for an ideally incoherent (first-order coherent Gaussian) field he gave the relations 
n 2n  

Gtn)(r1tl ... r2nt2n) = a !  n & * ( r , t , )  n € ( r j t j ) .  (Ib) 
t = l  . i = n - l  

In  this letter we present experimental results which verify both these formulae up to sixth 
order for the case when the 2n-space coordinates coincide. 

The  measurements were made by photon counting with a single detector which was 
effectively an ideal broadband device of negligible spatial extension and quantum efficiency 
x .  Equations (la) and (lb) then reduce, respectively, to 

and 
n 

W ) ( t l  ... tn ,  t ,  ,.. t l )  = n!  n G'l)(tj,  t j ) .  
j - 1  

(2b)  

The higher-order correlation functions are related to the photon-counting distribution 
p ( m ,  T )  from the detector through its factorialmoments (the actual moments of the intensity- 
fluctuation distribution), defined by (Glauber 1965, equation (17.12)) 

m 

S'"( T )  = 2 ~ ( W Z  - 1) . . . (WZ - I'+ l)p(m, T )  ( 3 )  
m = r  

where T is the sampling time. For small T this relationship is, by integration of equation 
(17.24) of Gauber (1965), 

In  terms of the normalized factorial moments given by 

cznG(n)(tl ... t,, t ,  ... t l )  = A\-(n)/Tn. (4) 

N ( r )  
E'" = - 

( 5 )  (Ahr(l))r 

the relations (Za) and (2b) take the forms, respectively, 

n(') = 1 
n(T) = r !  

SA 
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The best fields for such experiments have been found in the course of our work to be 
produced by a He-Ne single-frequency temperature-stabilized laser (Spectra Physics 
model 119) for the coherent source, and by the same laser light scattered from small 
spherical particles undergoing Brownian motion for the incoherent source. Details of the - -  
ekperimerkal arrangements have been given previously (Johnson et al. 1966 b, Jakeman 
et al. 1968). 

The pgoton-counting distributions are obtained from a total number 144 of samples, 
which is limited by the speed of the electronic equipment and by the overall time of the 
experiment. The statistical accuracy of the corresponding factorial moment, for a fixed 
overall time, improves as M increases for the coherent field, but reaches a maximum 
independent of Ji! for the incoherent field. A study of the statistical properties of periodic 
sampling in connection with photon-counting experiments will be published elsewhere, 
but we quote here the results relevant to this paper. Let be the estimator of N(')  
obtained from periodic samples; then, writing AV(1) = E ,  we have for the coherent field 

T~ is the coherence time of the incoherent source, T is the period between samples, and 
for the formulae to be valid we must have T J Y T  much greater than unity. We note that 
the formula given bv Arecchi et  al. (1966, equation (7)) for the variance of the actual 
moments of p(m, T )  -is incompatible with our results. For reasonable experimental times 
( -  10 min) it is possible to obtain accuracies better than a few per cent in the first six 
moments for the coherent source. In table 1 we show the result of a single experiment, 

Table 1. Normalized factorial moments for coherent source 
lo7  samples 

h-ormalized factorial 
moment Experiment Theory 

.(I) 1 *oooo 1 .oooo 
?2(2) 1,0002 1 .OOOO + 0.0009 
7Z(3) 1 *0001 1~0000f0~0017 
. (4)  1 $0006 1 .OOOO k 0.0030 

1.003 1.000 k0.012 
% ( 6 )  0.994 1 .OOO k 0.036 

corrected for dead-time effects (Johnson et. al. 1966 a) for the coherent source with lo7 
samples each of 1 p.i For the incoherent source the errors are much higher owing to the 
effect of a long coherence time (0.145 s)  in equation (7b) ,  and in table 2 we show the results 

Table 2. Normalized factorial moments for incoherent source 

Normalized lo5 samples 9 x l o6  samples 
factorial 
moment Experiment Theory Experiment Theory 

7 P )  1 .OOO i 0.036 1 .OOO k 0.038 1.000 1 .ooo 
n(21  2.00+0.15 2.00 i: 0.1 6 2.004 2.000 k0.017 

n ( 4 )  24.7 + 5.9 24.0 25.7 24.7 24.0 k0.6 
6.05 k0.85 6.00 i 0 . 8 5  6.05 6.00 i 0 . 0 9  

n ( 5 )  130 +45 120 +49 130 120 k5 
71") 805 k 461 720 i s 1 0  SO5 720 i 54 

i Similar results were presented at the Confereiice CIO7 in Paris, May 1966, but hare not 
previously been published. 
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of 90 experiments, each of lo5 samples of 1 ms; dead-time effects are now unimportant. 
For the latter experiments r/T was 1, T/rc was 7 x and the ratio of the detector area 
to the coherence area was 4 x The variance (scaled by the normalization) observed 
over the 90 experiments can be seen to agree well with that predicted by equation (7b),  
and the mean values are in satisfactory, although not perfect agreement, in both limits 
with equations (6 ) .  

Royal Radar Establishment, 
Great Malvern, 
Worcs. 

E. JAKEWAN 
C. J. OLIVER 

E. R. PIKE 
16th May 1968 

ARECCHI, F. T., BERN& A. ,  SONA, A., and BURL.AMACCHI, P., 1966, I.E.E.E. Trans. J .  Quant. Electron., 

GLAUBER, R. J.,  1963 a, Phys. Re@., 130, 2529-39. 
__ 
__ 1965, Quantum Optics and Electronics, Eds C. DeWitt, X. Blandin and C. Cohen-Tannoudji 

JAKERIAN, E., OLIVER, C. J., and PIKE, E. R., 1968, J .  Phys. A (Proc. Phys. Soc.), [2], 1, 406-7. 
JOHNSOX, F. A., JONES, R., MCLEAN, T. P., and PIKE, E. R., 1966 a, Phys. Rev. Lett., 16, 589-92. 
JOHSSON, F. A . ,  MCLEAN, T. P., and PIKE, E. R., 1966 b, Proc. Int. Conj. ofthe Physics ojQuantum 

Electronics, Puerto Rico, 1965, Eds P. L. Kelley, B. Lax and P. E. Tannenwald (New York: 
AIcGraw-Hill). 

QE-2, 341-50. 

1963 b, Phys. Rea., 131, 2766-88. 

(New York: Gordon and Breach). 


